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The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to 

flow internally with fluids is examined by experimental and theoretical analysis. These kinds of 

studies have been performed to find the existence of chaotic motion. In this paper, the important 

parameters of the system leading to such a chaotic motion such as Young's modulus and the 

coefficient of viscoelastic damping are discussed. The parameters are investigated by means of 

system identification so that comparisons are made between numerical analysis using the design 

parameters and the experimental results. The chaotic region led by several period-doubling 

bifurcations beyond the Hopf bifurcation is also re-established with phase portraits, bifurcation 

diagram and Lyapunov exponent so that one can define optimal parameters for system design. 
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I .  I n t r o d u c t i o n  

It is widely known from various experiments 

and analyses that a flexible tube conveying fluid 

is destabilized by buckling or flutter when the 

fluid flows beyond a critical velocity. It plays an 

important role to analyze the dynamics of the 

tube as designing of the piping system subjected 

to disturbance by fluids. 

So far, various studies have been made on the 

stability of the tube system. These studies began 

with a research by Ashley and Haviland (1950) 
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to investigate the vibration in the Trans-Ara-  

bian Pipeline. Benjamin (1961) verified that the 

dynamic characteristic of the articulated pipes has 

not any effect on friction between pipe and inter- 

nal fluid. Paidoussis (1970) examined the stabili- 

ty of a standing cantilever tube and a hanging 

cantilever tube, respectively. He showed that for 

sufficient high flow velocity the hanging tube 

flutters, on the contrary the standing tube loses its 

stability by buckling due to the weight of the tube 

itself as well as flutter. Sugiyama (1985) found 

the critical flow velocity along the stiffness and 

position of a supported spring in the horizontal 

cantilever tube. 
In addition to the above researches, several 

studies have been made on investigating such a 

chaotic region concerning the nonlinearity of the 

system. Paidoussis and Moon (1988) established 

that a chaotic oscillation occurs in the tube re- 
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strained within a gap between the tube and a 

motion constraint by experiments and numerical 

analyses. Thereafter, Paidoussis (1989) inves- 

tigated which parameters affect a tube system to 

bifurcation and chaotic motion with the calcula- 

tion of the largest Lyapunov exponents. Choi 

(1988) investigated the motion within a con- 

straint, which makes a piecewise-linear system. 

Jin (1997) investigated the effect of the spring 

constant, which restrains the motion of the tube, 

and some other parameters on the dynamics of the 

system. 

As the concern with chaotic motion in non- 

linear system has been growing in recent years, a 

number of studies have been focused on the pos- 

sibility of the existence of chaotic motion on the 

tube system conveying fluid. However there has 

not been any studies that tried to set up the para- 

meters of the system such as the modulus of 

elasticity and the coefficient of viscoelasticity, 

having an important effect on the dynamic be- 

havior of the tube. Since these parameters are 

sensitive to the environments of the system, the 

temperature and the humidity, and a term of 

application, etc., these can be varied and give rise 

to induce the nonlinear characteristic of the tube, 

i.e., bifurcation and chaotic motion. 

For this reason, in this paper, the parameters 

are estimated with system identification through 

the data obtained by experiments and it is per- 

formed to examine the difference between the 

result of the estimation and a numerical analysis 

so that one can define the value of the parameters 

close to a practical condition. 

2. Equat ion  o f  M o t i o n  o f  a 
C a n t i l e v e r  Tube  

A tube utilized in this study is a cantilever tube 

having its length, L as shown in Fig. 1. The mass 

per unit length of the tube is, the flexural rigidity 

of the tube, EI, the fluid mass per unit length is 

M and the fluid flows along the internal tube with 

the velocity, U and is discharged at its free end. 

The tube hanging vertically is undeformed initially 

along the x axis. 

The fluid being conveyed is assumed to be 
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Schematic of the system 

incompressible, of a steady-flow, and having a 

uniform velocity profile. In addition, since the 

diameter of the tube is smaller than the length of 

it and the motion of the tube is planar, an Euler- 

Bernoulli beam approximation is applied, which 

neglects the rotary inertia and shear deflection in 

the tube. 

The equation of motion of the cantilever tube 

can be derived by a force balance method as 

following (Paidoussis et al., 1991). 

E1 ~Y~ + E* I ~ +  [ MU2- (M + m) (L-xl gl ~y 

~Y (m+m)g~, +(m+m) 82y (1) 
+2MU ~ - +  t,.~ " c~t 2 

+ K(y-0.5 !1 y+yb I-I y-ybl))a!x-xb)=0 

where t denotes the time, g the gravitational 

acceleration, E* the coefficient of Kelvin-Voigt 

damping, and the lateral displacement of the tube 

is y(x, t). And is the stiffness of the constraint, 

xb the position of the constraint, Yb the gap 

between the tube and the constraint, 6' is the Dirac 
delta function. 

The dimensionless equation with Eq. (3) 

yields, 

[1 + a(01&) ] ~"" + [u 2- 7"(1 -~)] ( '  + 2~;2u~)'+ ?,( 
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~ = ~ ,  e _  x__ [ E1 \~2 t 
" -  L '  r = k M % m - )  U- '  

/ M \,~z ~ : / ~ )  uL, ~ : J + . . ,  M + m  
7 = E Y  - g L L  (3) 

xD / EI  ~'t2 a E* 
~=T/-' a=k~%%-) Z ~' a=E-' 
( ) ' = o ( ) 0 &  ( ) = a ( ) / O r  

Then, the Gallerkin 's  method is utilized on Eq. 

(2) to yield the ordinary differential equation, 

z/(~, r) = ~ ] ¢ i ( ~ )  q i ( r )  (4) 

where the comparison functions, ¢~(~e), are the 

cantilever beam eigenfunctions. Substituting Eq. 

(4) into Eq. (2) and integrating through the 

length of the tube, one obtains, 

{q ' }+[C]{q}+[K]{q}+{F(q)}={O}  (5) 

The elements of matrices, [C] ,  [K] ,  and 

I F ( q )  ], are, respectively, 

Csr=a,~4r~sr + 2t~U2ubsr, Ksr:/14r~sr + U2Csr ~ - 7esr, 

Fr:K[~r~r(~b) qr--~(l~r~r(~b)([rq-7]b] ( 6 )  

--]~r ~r(eb) qr-- T]b]) ]~r(~b) 

bsr={ 4/[ (~/".~)~+ (-1)~-+], r#:s } 
{2, r=s}, 

{ ~rdr(2--,~rdr), ;v=S }' (7) 
esr={{ 4(,~rdr-- ~sds+ 2) (--1) r+s 

--211 q-(,~s/,~r)4] bsr }/{ 1+ (As/,~r)~] 
--Csr, r:~S } 
{ 2-1/2c~, r=s } 

where, ~sr in Eq. (6) is Kronecker's delta. 

The eigenvalues of the system are plotted in 

Fig. 2 on the assumption that the system has 
one-degree-of-freedom (a) and two-degree-of-  

freedom (b). The arrows denote the increasing 

flow velocity. Figure 2 shows that the system is 

stable for all the flow velocity in (a), but the 

econd complex conjugate pair of four eigen- 

values of the system govern the unstable behavior 
of the system in (b). In detail, the system be- 
comes unstable by oscillatory behavior, i.e., flut- 

ter when the real values of second pair of eigen- 

values, Re(/~, ,~) ,  is positive. This phenomenon 
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Argand diagrams for the system ; (a) one- 
degree-of+freedom model, (b) two-degree- 
of-freedom model 

is called a Hopf  bifurcation, and the critical 

velocity, U is 7.05 m/s. Therefore the lowest 

dimensional (four-dimensional,  two-degree-of-  

freedom) model is developed in this paper for 

the simplicity of the continuous system having 
infinite degrees of freedom. 

In order to analyze the system numerically, 
rendering Eq. (5) into a state-space equation, 

then the following is obtained. 

{ 3; } = [ A ] { y  }+{  F ( y ) } ,  
{ y } = {  qi, q~, q2, q2} r (18) 

Eq. (8) is numerically integrated by using fourth 
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Phase plane plots of the system (E=9.72 × 106 N/m 2, E* = 1.723 x l0 s Ns/m 2) ; 

(a) for U = 7 . 0 m / s ,  (b) 7.1m/s, (c) 7.25 m/s, and (d) 30.0m/s 

order Runge -Ku t t a  algorithm with initial condi-  o9 

tions, y l ( 0 ) = y 3 ( 0 ) = 0 . 0 1 ,  y 2 ( 0 ) = y 4 ( 0 ) : 0  and oe 

the step size is 0.005. The resultant phase plots ~7 

with the parameters in Table  1 are shown in Fig. ~ 0n 

3. Figure 3 shows that the system is asympto- {0s 

tically stable for U = 7 . 0 m / s  in (a),  the limit ~= ~04 

cycle mot ion  beyond a Hopf  bifurcation for U = 

7.1 m/s  is observed in (b),  and asymmetric limit ~03 

cycle caused by different initial  condi t ion  is 0~ 

shown in (c). Figure 3 (d) shows that the system 01 

flutters as contact ing two sides of the constraints,  o I 

However, the results show no onset or pheno- 

menon of chaotic mot ion for the velocities. Fig. 4 

The tensile-test is performed to calculate the 

- -  measurement  .~ 
e ~  

, r i i i = 

005 01 015 02 025 03 035 04 
engrneenng strain 

Engineering stress-strain diagram for the 
silicon rubber tube 
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C r i t i c a l  velocity vs. modulus of elasticity, E 

modu lus  of  elastici ty of  the s i l icon r u b b e r  tube. 

F igure  4 shows the result  of  the test, and  the cal- 

culated value  is E = 2 , 1 5 9  MPa,  F igure  5 shows 

tha t  the cri t ical  flow velocity is p r o p o r t i o n a l  to 

the modu lus  of  elasticity. The  cri t ical  velocity 

app rop r i a t e  to the m odu l us  of  elasticity of  tested 

tube  is 4.79 m/s .  This  means  that  the b e h a v i o r  of  

the tube  can vary with some mater ia l  propert ies .  

The  next chapter ,  examined  which  cri t ical  flow 

velocity is app rop r i a t ed  to the system with ex- 

per iments .  

3. Experiment of Tube 
Conveying Fluid 

To carry out  an exper iment  for the system, an 

appa ra tus  is made  as shown  in Fig. 6 with the 

pa ramete r s  of  the tube and  the fluid in Tab le  I. 

The  mo to r  of  a p u m p  is con t ro l led  to vary the 

flow velocity. As the velocity is increased,  the 

mo t ion  o f  a tube  is measured  with two laser 

sensors and  analyzed by an F F T  analyzer  and  a 

PC which  can also store the measured  data.  

The  tube  be ing  examined  in this  s tudy becomes 

uns tab le  by flutter over  the cri t ical  velocity where  

a H o p f  b i furca t ion  occurs. This  state is repre- 

sented as a l imit  cycle in a phase  p lane  as shown  

in Fig. 7. 

The  ampl i tude  of  a l imit  cycle is p r o p o r t i o n a l  

to the flow velocity. Therefore ,  when  the mo t ion  

of  the tube  is res t ra ined at an app rop r i a t e  posi- 

Table 1 Parameters of the test tube and the fluid 

test tube silicon rubber 

fluid water 

length of the tube, L (m) 0.6 

outside diameter, do (m) 0.011 

inside diameter, d~ (m) 0.0076 

area moment of inertia, I (m 4) 5.55 × 10 -l° 

mass of tile tube per unit length, 
0.006247 

m (kg/m) 

mass of the fluidper unit length, 0.04527 
M (kg/m) 

Young's modulus, E (N/m 2) 9.72 × 106 

mass ratio, # 0.87874 

coefficient of Kelvin-Voigt 1.723 × l0 s 
damping, E* (Ns/m z) 

laser sensor position, 0.0766, 0.18165 
Xl.t, .~'c2 (n )  

motion constraint position and gap 
between the tube and constraint, 0.28905, 0.0155 

x~, yb (m) 

Fig. 6 Photo of the experimental apparatus 
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tion, the tube bumps against one side of the 

constraint, but does not contact permanently. A 

pitchfork bifurcation occurs that a symmetric 

limit cycle is transformed into an asymmetric 

one in accordance with the change of the initial 

condition. Increasing with the flow velocity, a 

period-doubling bifurcation is generated, which 

the behavior is multi-periodic. In Fig. 7(a) the 

tube flutters for the velocity U>5.52  m/s without 

banging on the constraint. The more the velocity 

increases, the larger the amplitude of the motion 

becomes, and consequently, higher harmonics 

components are generated by contacting with the 

constraint as in (b), and the limit cycle can be 

shown in the phase plot. It is clearly seen that the 

subharmonic components of a fundamental fre- 

quency occur in (c) and (d), so two or more 

periodic motions are presented in phase diagrams. 

A bifurcation diagram is presented with the 

displacement of the tube when the velocity of the 

tube is zero at each flow velocity in Fig. 8. Figure 

8 shows that the Hopf bifurcation occurs at U =  

5.52 m/s and the period-doubling bifurcation at 

U=5.993 m/s and 6.053 m/s. 

The problem which has to be considered is 

that the critical velocity (Hopf bifurcation oc- 

curs) of the experiments is different from one of 

the numerical analysis with the modulus elasti- 

city, E=9 .72  MPa as well as one of the numerical 

analysis with the modulus elasticity calculated 

from the tensile test (the modulus of elasticity is 

2.159 MPa) in the previous chapter. These differ- 
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Bifurcation diagram by the experiment 

ences mean that the critical flow velocity when the 

Hopf bifurcation occurs varies as some material 

properties. Therefore, exact material properties in 

the experimental system need to be verified. The 

exact material properties will be estimated by 

system identification in the following chapter. 

4. System Ident i f icat ion 

The nonlinear dynamic behavior of the tube 

was observed previously. However, to compare 

the theoretical analyses of the tube with the ex- 

periment results, one exactly defines the para- 

meters that include sensitively variable ones, such 

as Young's modulus and the coefficient of vis- 

coelastic damping. Accordingly, in this paper, 

Young's modulus, the coefficient of Kelvin-Voigt 

damping, and the stiffness of the constraint are 

estimated with system identification from the data 

obtained by the experiment. 

To estimate the parameters of the system, Eq. 

(5) is transformed into as follows. 

~ = A "  0 (9) 

That is, 

L'L t")[qdt , )q2(t , )d~(t , )q2(t , )  f(o(t, I1 L ~I~2 

where 

ar=K~, br=K,~, cr=Cr~, 
(I1) 

d r = C m ,  e r = K X  ~r(~b) 

The data measured with two laser sensors are 

substituted into Eq. (10), and then the parame- 

ters with the identification being utilized by the 

least square method (Johansson (1993)), i.e., 

(ATA)-~Ar~b, are represented in Table 2. The 

number of data utilized is n=7000. 

What needs to be noticed is that the value 

of coefficient of elasticity and viscoelasticity in 

Table 2 are different from those in Table 1. This 

means that the parameters can be varied along the 

temperature, humidity, and time of being used 

when the system is operated. In consequence, 
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there are limits to design the system with only the 

value of a handbook.  Therefore, it needs to 

validate that parameters used in designing agree 

with ones in the practical system. 

Table 2 Parameters through system identification 

Young's modulus, E (N/m z) 4.041 X 106 

coefficient of Kelvin-Voigt 
0.8173 × 10 ~ 

damping, E* (Ns/m z) 

stiffness of the constraint, x (N/m z) 783.29 

5. Comparison and Veri f icat ion  

The results with the parameters estimated are 

shown in Figure 9. Here, the tip displacement and 

velocity of tube are calculated with Eq. (12), and 

the transients are truncated. 
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Phase plots and Poincare map of the system (E=4.041 × I 0 ~ N/m 2, E* =0.8173 × 10 s Ns/m z) ; 
(a) at U=5.457 m/s, (b) 5.55 m/s, (c) 5.67 m/s, (d) 5.95 m/s, and (e) 6.70m/s 
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Table 3 Comparison of experimental and numerical 
values of the critical flow velocities 

U experiment, numerical [ A - B  I/A×100 
A results, B 

U~ 5.52 m/s 5.45 m/s 1.27% 

Ups 5.65 m/s 5.497 m/s 2.7% 

/J'pa 5.993 m/s 5.948 m/s 0.75% 

Uch 6.5 m/s 

0 [ 3 5  

O 0 4  

E 002 

g 

-oo~ 

-004 

-O 0 6  

Fig. 10 

t 

s's ~ 6'5 z /5 
velocity, U (m/s) 

Bifurcation diagram for the tip displacement 
of the system for the range of 5.1<_U_< 
7.1 lm/s 

~/(1, r) ~ b l ( 1 )  vt(r) +~bz(l)y3(r) 

7)(1, r) ~ b l ( l ) y 2 ( r )  +~bz(l)y4(r) 
(12) 

In Figures 2, 5, 8, the critical velocity at which 

the Hopf bifurcation occurs in theoretical and 

experimental analyses were considerably different 

from each other, and in Fig. 8 the period dou- 

bling bifurcations were verified, while there were 

not any unstable limit cycles with the parameters 

in Table 1. But Fig. 9 shows the symmetric limit 

cycle (a), asymmetric limit cycle (b), a motion 

contacting the constraint (c), period-double mo- 

tion (d), and narrow band chaotic motion. The 

bifurcation diagram with the estimated parame- 

ters for the range of 5.1-<U-<7.11m/s when 

the tip velocity of the tube is zero is represented 

in Fig. 10. As shown in Fig. 10, there are a little 

differences between each flow velocity which 

causes the bifurcations in the experiment and 

those in numerical results with the estimated 

0 1  n u n I 

2 8 10 12 14 16 1B 213 
low velocity, U (m/s) 

Fig. 11 Lyapunov exponents for the system for the 
range of 1 "< U-<20.O m/s 

parameters as in Table 3 (where Hopf bifurcation 

occurs for Um pitchfork bifurcation for U~/, 

period-doubling bifurcation for Upa, and chaotic 

motion occurs for Uch) however the overall 

behaviors of the tube is nearly similar to each 

other. There are very small differences between 

the parameters in designing and the parameters 

being identified, nevertheless remarkable con- 

trasts are appeared in the results. The difference of 

Young's modulus compared with the value in 

designing is about 58.4% as 5.679 × 10 6 N/m 2, and 

the difference of the coefficient of the Kelvin- 

Voigt damping is about 52.57% as 0.9057× l0 s 

Ns/m z, but the characteristics of the system from 

each parameter are completely different. This 

means that the dynamic characteristic of the can- 

tilever tube can be varied along not only the flow 

velocity being conveyed internally, but also the 

stiffness and the damping parameter of the tube. 

In Fig. 11, the largest Lyapunov exponents 

were calculated to define the chaotic behavior 

of the system. As shown in Fig. 11, the motion of 

the tube becomes chaotic for U > 6 . 5 m / s  be- 

cause the largest Lyapunov exponent, ,~ is posi- 

tive. Also, Lyapunov exponents of the range of 

the coefficient of viscoelasticity, 0.5 × 10 s-< E*_< 
5.0X 105Ns/m z for U=8.0  m/s are computed in 

Fig. 12. Figure 12 shows that the behavior of the 

tube is varied with the coefficient of viscoelastiity, 

i.e., chaotic motion of the system occurs for E* > 
1 Ns/m 2. 
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Therefore, since a small difference of the stiff- 

ness or the damping parameter can affect the 

entire behavior of the system, such an alteration 

should not be overlooked. 

6 .  C o n c l u s i o n s  

In this study, the nonlinear dynamic behavior 

of a flexible cantilever tube conveying fluid was 

examined. As for this, a two-degree-of-freedom 

model was adopted and an experimental ap- 

paratus was made. A system identification was 

performed to estimate the parameters of the tube, 

and the parameters were substituted into the equa- 

tion of motion to compare the results from the 

numerical analyses and the experimental results. 

Since the modulus of elasticity and the co- 

efficient of viscoelasticity can be varied with the 

environments on which the system operates, there 

are the differences between the expected behavior 

while designing and the experimental one. 

The characteristic of the cantilever tube system 

is very sensitive to the parameters. The system 

with an arbitrary parameter can be destablized by 

flutterlike divergence, while the chaotic motions 

can occur in the system with a small change of the 

material property. 

Therefore, when one designs a piping system, it 

is necessary to consider these two parameters of 

the modulus of elasticity and the coefficient of 

viscoelasticity carefully. 
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